Regularized Auto-Encoders Estimate Local Statistics

نویسندگان

  • Guillaume Alain
  • Yoshua Bengio
  • Salah Rifai
چکیده

What do auto-encoders learn about the underlying data generating distribution? Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of the unknown data generating density. This paper clarifies some of these previous intuitive observations by showing that minimizing a particular form of regularized reconstruction error yields a reconstruction function that locally characterizes the shape of the data generating density. More precisely, we show that the auto-encoder captures the score (derivative of the logdensity with respect to the input) or the local mean associated with the unknown data-generating density. This is the second result linking denoising auto-encoders and score matching, but in way that is different from previous work, and can be applied to the case when the auto-encoder reconstruction function does not necessarily correspond to the derivative of an energy function. The theorems provided here are completely generic and do not depend on the parametrization of the autoencoder: they show what the auto-encoder would tend to if given enough capacity and examples. These results are for a contractive training criterion we show to be similar to the denoising auto-encoder training criterion with small corruption noise, but with contraction applied on the whole reconstruction function rather than just encoder. Similarly to score matching, one can consider the proposed training criterion as a convenient alternative to maximum likelihood, i.e., one not involving a partition function. Finally, we make the connection to existing sampling algorithms for such autoencoders, based on an MCMC walking near the high-density manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning invariant features through local space contraction

We present in this paper a novel approach for training deterministic auto-encoders. We show that by adding a well chosen penalty term to the classical reconstruction cost function, we can achieve results that equal or surpass those attained by other regularized auto-encoders as well as denoising auto-encoders on a range of datasets. This penalty term corresponds to the Frobenius norm of the Jac...

متن کامل

Contractive Auto-Encoders: Explicit Invariance During Feature Extraction

We present in this paper a novel approach for training deterministic auto-encoders. We show that by adding a well chosen penalty term to the classical reconstruction cost function, we can achieve results that equal or surpass those attained by other regularized autoencoders as well as denoising auto-encoders on a range of datasets. This penalty term corresponds to the Frobenius norm of the Jaco...

متن کامل

Image Representation Learning Using Graph Regularized Auto-Encoders

It is an important task to learn a representation for images which has low dimension and preserve the valuable information in original space. At the perspective of manifold, this is conduct by using a series of local invariant mapping. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE...

متن کامل

What regularized auto-encoders learn from the data-generating distribution

What do auto-encoders learn about the underlying data generating distribution? Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of data. This paper clarifies some of these previous observations by showing that minimizing a particular form of regularized reconstruction error yields a reconstruction function that locally characterizes th...

متن کامل

Information Potential Auto-Encoders

In this paper, we suggest a framework to make use of mutual information as a regularization criterion to train Auto-Encoders (AEs). In the proposed framework, AEs are regularized by minimization of the mutual information between input and encoding variables of AEs during the training phase. In order to estimate the entropy of the encoding variables and the mutual information, we propose a non-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1211.4246  شماره 

صفحات  -

تاریخ انتشار 2012